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ABSTRACT: Skills in science, technology, engineering, and mathematics (STEM) are increasingly in demand. 

Theoretical knowledge and formulas alone are frequently not sufficient to understand complex phenomena. 

Simulations are a valuable tool to support the conceptual understanding by visualizing invisible processes. The 

constant interaction with the learning material is an essential factor when learning with simulations and virtual 

worlds. Virtual reality (VR) technologies enable interaction with the virtual environment with a high intensity of 

immersion. Maroon is a VR platform for teaching physics and has been in development for over five years. 

Previous results with Maroon have already demonstrated the potential of virtual reality for learners and teachers, 

but also highlighted a list of potential challenges in terms of VR experience design, usability, and pedagogical 

concepts. Over the past six months, we have conducted user studies with a total of 85 participants, both student 

teachers (n = 26) and pupils (n = 59) at high schools and teacher training institutions. In this paper, we want to 

facilitate the difficult task of designing educational VR platforms by describing the expectations of educators and 

pupils. 
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1. Introduction 
 

Innovative technologies and high-quality scientific research have a significant impact on our daily lives. Topics 

in the field of science, technology, engineering, and mathematics (STEM) are becoming more and more relevant 

and are a significant driver of innovation. Consequently, there is a growing demand for experts with experience, 

know-how, and skills in these fields (Zeidler, 2016). Olson and Riordan (2012) have already pointed out the 

need to increase the number of students with a degree in STEM disciplines. Lack of interest and enthusiasm are 

among the reasons for high failures in these fields. Students describe it as boring, complicated and uninteresting. 

It is not clear to many students why they must study natural sciences. It is therefore necessary to promote the 

interest and motivation of students in the STEM disciplines (Reeve, Jang, Carrell, Jeon, & Barch, 2004). 

 

As Freedman (1996) shows, teaching science is a challenging task, especially in the field of physics. Traditional 

teaching methods present solutions and concepts, but they fail to teach how to solve problems. Hake (1998) 

confirms this observation by showing that students have difficulties understanding conceptual aspects while 

memorizing formulas. An old Chinese saying supports the concepts of learning through experience: “I hear, and 

I forget. I see and I remember. I do and I understand.” The integration of educational activities which involves 

learners in the learning process has shown to be a successful teaching method. Students learn by doing things 

and think about what they are doing (Freeman et al., 2014). Learning tools with interactive and engaging 

activities can help students to better understand such conceptual aspects. Sanders (2008) shows that in physics, 

the combination of hands-on experiments, interactive simulations and active participation are valuable tools that 

support learners during their educational process. Interactive simulations such as PhET (see 

https://phet.colorado.edu/) allow students to take the ownership of the learning experience and support their 

conceptual understanding by making connections to everyday life. They can be integrated into teacher demos, 

interactive discussions, classroom activities, labs and homework to support teachers in illustrating concepts 

(Moore, Chamberlain, Parson, & Perkins, 2014). This active learning concept can be extended by various 

modern technologies to meet the needs of a new generation of learners in a flexible and digital way. Simulations, 

visualizations, virtual and remote laboratories support students in self-directed, active, and group-based learning. 

 

De Jong et al. (2013) showed that any lab form has its advantages for certain use cases. While real laboratories 

are more suitable for acquiring hands-on experience, virtual laboratories enable expandable experiments, 

multiple access and visual representation of unseen phenomena with minimal potential for the occurrence of 

dangerous situations. In virtual laboratories designed for active learning , learners become part of the simulated 

environment by interacting with the virtual world, which helps them to learn complex concepts. The combination 

of simulations and visualizations in a lab-like environment offers schools and universities a cost-effective way to 

provide learning experiences similar to those in real-world labs (Asıksoy & Islek, 2017). The use of immersive 

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://phet.colorado.edu/
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and interactive technologies such as virtual reality opens new possibilities for creating engaging learning 

experiences. 

 

In previous works (Pirker et al., 2017a; Pirker et al., 2017b; Pirker, Lesjak, Parger, & Gütl, 2018) we introduced 

Maroon, an interactive physics laboratory and experiment environment designed to teach physics in a more 

engaging and immersive way. In small-scale studies we found that various VR technologies can be used to 

support and engage learners in understanding physics. Maroon supports immersive VR, where a stereoscopic 

head-mounted display (HMD) that is tracked by sensors is used. With the HMD and controllers it is possible to 

achieve spatial immersion and to conduct hands-on experiments. Additionally, Maroon can be used on a PC 

(desktop VR), where a three-dimensional world is simulated on-screen. In a recent study (Pirker et al., 2019a) we 

collected qualitative data from secondary school teachers to identify use cases, design goals and issues. In this 

paper we intend to extend our previous work (Pirker, Holly, & Gütl, 2020) to facilitate the difficult task of 

designing educational VR platforms by describing the challenges and the expectations of educators and pupils. 

The main research goals are defined as the following: 

• Identification of educator and learner expectations for teaching and learning in VR. 

• Providing a first guideline for the design of a VR learning environment for the classroom. 

• Discussion of challenges and recommendations for the design and development of learning and teaching 

activities in VR. 

 

Contribution: In this paper, we present a study with 26 student teachers and 59 pupils, discussing the room-

scale VR version of the learning environment Maroon for physics education in classroom situations. The focus is 

on identifying and discussing expectations for teaching and learning in VR and challenges by combining the 

study results with a literature review. 

 

The following section gives an overview of the background and the related work in the field of STEM education 

and of the challenges in designing educational VR platforms. In Section 3, we introduce the virtual physics 

laboratory Maroon and the conceptual design of the experiments and simulations. Section 4 describes the study 

design, and Section 5 presents the results. In Section 6, we discuss the challenges and recommendations based on 

the literature review and our findings. Section 7 closes with a discussion about implications, potential and gives 

some ideas for further studies. 

 

 

2. Related work 
 

STEM subjects have high drop-out and failure rates. This can be related to difficulties students have in 

understanding theoretical concepts (Olson & Riordan, 2012). Therefore, researchers such as Olson and Riordan 

(2012) or Dori, Hult, Breslow, and Belcher (2007) combined traditional classroom experiences with interactive 

and engaging digital learning experiences such as virtual simulations or animations to help students better 

understand the underlying concepts and phenomena. Conducting experiments in virtual or remote laboratories 

that would otherwise be dangerous, hard to conduct and/or too expensive is another way for effectively support 

learners (Corter et al., 2007). Wieman and Perkins (2005) showed that digital resources are a cost-effective, safe, 

and fast alternative to traditional learning methods and experiment setups. Furthermore, these digital resources 

have been shown to help users to achieve a better understanding. 

 

VR tools can support the students in their learning process. Slavova and Mu (2018) showed that when using VR 

as a complementary tool to traditional learning methods, students showed higher performance in understanding 

and recognizing concepts. Furthermore, learners using VR technologies remain more motivated during their 

learning process (Liou & Chang, 2018). Bogusevschi, Muntean, and Muntean (2020) have published a study on 

the effect of a virtual 3D physics learning environment on 12-13-year old students that concluded that over 74% 

of the participants found the simulation helpful for gaining a better understanding. 

 

Due to the decreasing prices of HMDs, we could observe that an increasing number of studies on the use of VR, 

especially for educational use, have been published. Furthermore, HMDs have become lighter and even wireless 

alternatives, such as the Oculus Quest, are now available, factors which are helping to increase their broad 

distribution and use. Due to the lower costs of HMDs, the increased research and the technical process, VR is 

becoming both more immersive and more widely available to a wider user base (Dempsey, 2016), making it 

easier to use VR learning experiences as an addition to the traditional classroom setups.  

 

Nevertheless, researchers are still investigating the challenges that arise from the use of VR as a learning tool. 

Velev and Zlateva (2017) point out that a highly immersive experience must be created to achieve a high 
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learning rate. According to Stark (1995) VR does not depend on highly realistic surroundings, as long as the 

virtual space offers enough cues for the perceptual system, immersion can be achieved. It is of greater 

importance when creating an immersive experience that the motion sickness is reduced to a minimum and the 

interface design of the VR simulation is appealing (Callaghan, Eguíluz, McLaughlin, & McShane, 2015). 

Especially in the field of physics, immersive learning experiences help to achieve a better understanding, 

particularly if the design places a special emphasis on interactivity (Pirker, Gütl, Belcher, & Bailey, 2013; Pirker, 

Berger, Guetl, Belcher, & Bailey, 2012). Abulrub, Attridge, and Williams (2011) confirm that for a high learning 

rate, the VR experience must be designed so that the user can actively interact with the virtual world.  

 

Furthermore, not only the setup time of HMDs and virtual simulations for the use in real classrooms could 

become problematic, but also the time needed for students to become familiar with the new technology (Velev & 

Zlateva, 2017). They need a guided tutorial or someone to help them and guide them through their first 

experiences (Abdelaziz, Alaa El Din, & Senousy, 2014; Safikhani, Holly, & Pirker, 2020). De Jong and Van 

Joolingen (1998) describe that it has a positive influence on the learning effect when theoretical information is 

available during the simulation. Additionally, they explain that tasks help the users to focus on the desired 

outcome and guide them through the experience. Most teachers have limited time and classroom settings usually 

provide limited hardware resources, factors which reduce the time each of their students has in the virtual 

laboratory. Most VR learning experiences allow only limited personal interactions, which makes collaborative 

learning and teamwork difficult (Velev & Zlateva, 2017). 

 

One of the most challenging, but also most promising parts of VR learning experiences is the optimization of the 

knowledge acquisition process. Mainly Callaghan, Eguíluz, McLaughlin, and McShane (2015), Velev and 

Zlateva (2017) and Liou and Chang (2018) discovered various guidelines for designing VR learning experiences. 

Creating a good virtual experience requires that users are not initially overwhelmend with the virutal world, 

which can be achieved by reducing dizziness and motion sickness. Furthermore, VR laboratories offer many 

possibilities that conventional ones cannot provide. For example, invisible phenomena can be visualized and 

made interactable and students can perform dangerous and expensive experiments. Students are offered a fully 

controllable and safe learning environment that reduces health risks, in case of performing dangerous 

experiments, and ensures that the same input will always lead to the same output. It also gives learners the 

possibility to apply their theoretical knowledge in practice, which motivates them and boosts their creativity. 

Given the large number of studies focusing on VR learning environments and laboratories, Ip and Li (2015) 

criticize that most of them failed to demonstrate an increase in long-term knowledge acquisition and that more 

long-term observations should be made. 

 

 

3. Maroon – Virtual learning application 
 

Maroon (see https://maroon.tugraz.at; to put someone ashore and abandon them on an island) is an interactive 

virtual physics laboratory that allows students to explore various experiments and phenomena in an immersive 

and engaging way. It is implemented in Unity (see https://unity.com) and supports different platforms with 

different levels of immersion such as virtual reality, mobile devices, or web-based applications. The learning 

activities and experiments are designed for active learning to involve students in the learning process. The main 

laboratory room (Figure 1) consists of different experiment stations and functions as a three-dimensional menu 

where the user can select one of the experiments by navigating to the specific station. Currently, the laboratory 

contains a whiteboard scene with different learning lessons, and eight experiments in the field of 

electromagnetism, electrostatics, oscillation, and waves (Pirker et al., 2019b). The experiments support several 

virtual learning experiences with different forms of engagement and immersion through diverse activities and 

interactions. In the following subsections the application concepts of Maroon VR and the different experiment 

setups are presented. 

 

https://maroon.tugraz.at/
https://unity.com/
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Figure 1. Overview of Maroon’s laboratory with different learning stations 

 

 

3.1. Maroon VR 

 

The VR version of Maroon extends the core functionalities of Maroon with room-scale VR support for the HTC 

Vive (see https://www.vive.com) and the Oculus Rift (see https://www.oculus.com/rift). This version of Maroon 

offers a virtual reality experience with a high degree of immersion and focus on the learning content. Users can 

walk freely in the classroom within a predefined play area, allowing natural movement within the virtual 

environment. Due to real-world restrictions and the limitation of the tracking area, users need to become familiar 

with a different form of movement to cover greater distances in the virtual world. In VR applications, 

teleportation has become a standard and allows the user to move to a certain position while minimizing the 

feeling of motion sickness. For teleportation, the user can press a button on the controller to activate a colored 

arc, by moving the controller the user can point to the desired destination. After releasing the button, the user is 

placed in that position. Teleport markers in front of each experiment station help to navigate to a specific 

experiment by capturing the teleport beam. Each experiment or activity can be started from an entry-point that 

acts as a portal into the simulation room. Each experiment has a customized user interface and offers various 

virtual control elements to control specific experiment parameters and visualizations. 

 

 

3.2. Experiment setups in VR 

 

Maroon VR supports two different types of experiment setups each with an individual design. The first 

experiment setup contains only the elements necessary for the simulation (see Figure 2a). The experiment is 

placed in the middle of a simple and compact room and can be controlled via virtual control panels on the right 

and left side. This allows the user to observe the experiment results while setting the experiment parameters. To 

keep the interaction as simple as possible, all elements are arranged in such a way that they are accessible 

without use of teleporting. In contrast, the second setup contains additional gamified elements in a retro-

futuristic laboratory room with a simplified design to improve student’s engagement and motivation (see Figure 

2b). The predefined quest list gives clear instructions by displaying different tasks, the progress, and additional 

information about the simulation. 

 

 
(a) 

 
(b) 

Figure 2. Different design setups in VR: a) simple experiment room with virtual control elements and b) retro-

futuristic laboratory room with quest management system 
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3.3. Experiments and simulations 

 

In this section the two interactive experiments Faraday’s Law and Huygens’s Principle are presented, which 

were used to evaluate the room-scale VR version of Maroon. The goal of these simulations is to simulate and 

visualize the concept of induction and diffraction. Each of them implements the general physical phenomenon 

and extends it with an appropriate user interface. The Faraday’s Law Experiment shows the principle of 

induction when interacting with a permanent magnet and a conductive non-magnetic ring. Whenever the user 

moves the magnet, it causes a change in the magnetic flux and induces an electric current that generates another 

magnetic field. Through different visualizations the invisible magnetic field becomes visible and helps the user 

to better understand the underlying concepts. The virtual controls allow the user to influence the result of the 

experiment by changing the parameters of the magnet and the coil. The special feature of this experiment is the 

haptic feedback from the controllers, which allows the user to feel the acting forces. The controller vibrates as 

soon as a physical force acts on the magnet, where low vibration means a weak force, and high vibration means a 

heavy force. This allows users to have a real feeling of the acting forces. The Huygens’s Principle Experiment 

uses water waves in a basin to demonstrate the physical concept of diffraction. It is a phenomenon that occurs 

when a wave hits an obstacle or a slit. To show the effect of diffraction, a slit plate is placed into the basin. When 

a wave hits this plate, the points on the wave act as a new source of secondary waves that propagate. This results 

in an interference pattern behind the plate. To obtain different interference patterns, the user can replace the plate 

with three types of slit plates. The experiment is influenced by the user by grabbing and moving the plates and 

changing physical parameters such as frequency, amplitude, wavelength, or the propagation mode. To make the 

wave peaks and wave trough more visible, the wave color can be changed using a color wheel. 

 

 

4. Evaluation 
 

In previous studies, we focused on different learning experiences with room-scale VR, mobile VR, and 

traditional screen-based technologies as well as on engagement, usability, and user experience with room-scale 

VR as the most engaging and most immersive form. However, we also found that teachers and students have 

very different opinions and expectations about experience design in VR. Therefore, in this paper, we focus in 

this paper on identifying teacher and pupil expectations for teaching and learning in VR. Since there are known 

issues convincing experienced teachers to try new things in educational technology, we conducted a user study 

with 26 student teachers and 59 pupils, which are open for new technologies. The study was organized in 

cooperation with two local schools and two universities with a focus on the following: 

 

• Experience and engagement, 

• Usability, 

• Learning value from learner’s perspective, 

• Learning value from teacher’s perspective. 

 

 

4.1. Setup 

 

We used two portable setups, including a gaming notebook, an HTC Vive HMD, two controllers, two 

lighthouses, and two tripods for the lighthouses. The two setups were placed in a single classroom with a 

minimum size of 2m x 2m for each VR station. All participants were in the same classroom and worked in pairs. 

Half of the participants tested the simple design of the experimental room, and the other half tested the retro-

futuristic laboratory room. While the persons who tested the experiments in VR were given instructions from 

their partners outside (Figure 3a), the others tried the same experiments in the desktop version (Figure 3b). After 

20 minutes, the groups were swapped, so that the participants using the VR version were now using the PC 

version and vice versa. To get a real classroom situation the setup was conducted within the context of a physics 

class and in a university classroom where the student teachers were role-playing as pupils. During the tests 

participants were not wearing earphones so we could talk to them and guide them through the experiments.  
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(a) 

 
(b) 

Figure 3. Classroom setup: a) VR workstation and b) desktop workstation 

 

 

4.2. Material and procedure 

 

For this study, we worked with two high schools and two universities to test Maroon from the perspective of 

students and prospective teachers. At the beginning of each test run the participants were asked to fill out a pre-

questionnaire to obtain information about their ages, gender, experience with games, VR platforms, and e-

learning tools. They were then given a short introduction how to work and interact with the environment. We 

introduced them to the controls and gave them instructions for the different tasks to be completed during the test 

run. 

 

Pupils and student teachers were asked to perform the following tasks: 

• Introductory session: Have a look at the lab environment and get a first impression. 

• Go to the Faradays’ Law experiment and start the simulation by moving the magnet. Try to identify the 

relationship between the electrical current and the acting force. Find out how the parameters of the magnet 

and the coil affect the experiment outcome. 

• Go to the Huygens’ Principle experiment and start the simulation. Try to understand the concept of 

diffraction and describe the interference pattern behind the slit plate. 

• Take time to try other experiments (optional). 

 

We provided an additional exercise sheet for the pupils in which they could work on different questions about 

the experiments. After conducting the experiments, the participants were asked to fill out a post-questionnaire in 

which they had to answer open-ended questions about their overall experience; 22 questions on a Likert scale 

between 1 (fully disagree) and 5 (fully agree) about their sentiment towards the physics lab, and 10 questions 

regarding usability. We used the System Usability Scale (SUS) (Brooke, 1996) to measure the system usability 

and the Computer Emotion Scale (Kay & Loverock, 2008) to assess users’ experiences of interacting and 

learning with the virtual environment. To gain a deeper understanding of the user experience and use cases, 

pupils and student teachers were interviewed about the experiments and application scenarios in school classes. 

Student teachers were also asked about pedagogical models and cooperative scenarios. 

 

 

4.3. Participants 

 

In total 40 high school pupils, 19 pupils from an engineering secondary school (51 male, 8 female) and 26 

student teachers (15 male, 11 female) took part in the user study. All 26 student teachers were attending the 

teacher education program for physics. The pupils were aged 13 to 19 (AVG = 14.41, SD = 1.87) and the student 

teachers from 21 to 31 (AVG = 23.69, SD = 2.65). 14 pupils and 11 student teachers had a visual impairment 

(including people wearing glasses). 

 

We asked each of them to rate their experience with computers, video games and VR on a Likert scale from 1 

(low) to 5 (high). Most pupils rated themselves as experienced with computers (AVG = 3.22, SD = 0.91) and 

video games (AVG = 3.59, SD = 1.16). Student teachers stated that they were also experienced in using 

computers (AVG = 3.12, SD = 0.91) but rated their experience with video games lower (AVG = 2.54, SD = 1.65). 

Pupils and student teachers indicated that they often play video games (pupils: AVG = 2.68, SD = 1.41; teachers: 

AVG = 2.27, SD = 1.46). 52 of the pupils and 16 of the student teachers liked playing video games but had little 
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experience with VR (pupils: AVG = 1.69, SD = 0.93; teachers: AVG = 1.50, SD = 0.86). 52 pupils and 19 student 

teachers had heard about VR devices previously, but only 22 pupils and 7 student teachers had tried one. 45 

pupils and 20 student teachers have already used an e-learning tool. Both pupils and student teachers consider 

the use of virtual reality in physics lessons to be a good idea. 

 

 

5. Results 
 

In this section, we describe the results obtained from the open-ended answers and the answers based on a Likert 

scale. Since the learning outcome depends on the user experience and the acceptance of the system, we focus on 

usability, engagement, immersion, and the learning experience as well as on application scenarios and 

pedagogical models. 

 

 

5.1. Usability and user experience 

 

Most participants were able to handle the VR controllers without any problems. Only a few of them had some 

initial problems when they tried to move in the virtual world or wanted to interact. They teleported themselves 

against walls or used the wrong button for interaction. By contrast, all participants were able to interact with the 

PC version without additional instructions. The users described the desktop application as more familiar but 

would prefer the interaction in VR as it is more realistic and natural. We used the Computer Emotion Scale to 

evaluate the emotions anger, anxiety, happiness, and sadness when learning with the VR environment. As shown 

in Table 1, pupils and student teachers rated the emotion happiness (e.g., satisfied, excited, curious) as high and 

the emotions of sadness, anger, and anxiety as very low. In total 44 pupils and 23 student teachers have 

completed the SUS questionnaire. It shows the degree of usability from 0 (poor) to 100 (excellent) and was rated 

with 76.5 by pupils and with 73.5 by student teachers. The resulting scores indicate an above average usability 

compared to other VR learning tools. When we asked participants whether they felt nauseous or dizzy while 

using VR, only two pupils and one student teacher reported cyber sickness. 

 

Table 1. Results of the 12-item Computer Emotion Scale on a Likert Scale between 0 (never) and 3 (always) 

 

 

Pupils Student Teachers 

AVG SD AVG SD 

Satisfied 2.63 0.48 2.58 0.69 

Excited 2.78 0.41 2.73 0.44 

Curious 2.73 0.48 2.73 0.44 

Happy 2.46 0.56 2.42 0.74 

Depressed 0.15 0.48 0.04 0.19 

Discouraged 0.36 0.73 0.04 0.19 

Scared 0.22 0.49 0.08 0.27 

Insecure 0.54 0.62 0.69 0.72 

Helpless 0.41 0.49 0.46 0.57 

Nervous 0.51 0.74 0.38 0.56 

Frustrated 0.03 0.18 0.08 0.27 

Angry 0.05 0.39 0.04 0.19 

 

 

5.2. Immersion and engagement 

 

Pupils rated the immersion of the experience on a Likert scale from 1 (not immersive at all) to 10 (fully 

immersive) as an average of 9.00 (SD = 0.98). Some pupils mentioned that learning with Maroon was easier and 

more engaging than traditional learning methods. Only two pupils experienced dizziness, which could hinder a 

convincing user experience. 

 

Prospective student teachers rated the immersion of the experience on the Likert scale from 1 to 10 slightly 

lower than the pupils with an average of 8.50 (SD = 1.24). Among other things, it was noted that Maroon VR has 

a high degree of interaction that allows the inclusion of multiple senses. Furthermore, some of the student 

teachers mentioned the feeling of forgetting about being in a virtual world after spending some time within 

Maroon, which was induced by the high degree of interaction. 
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5.3. Learning value from the learner’s perspective 

 

To evaluate the learning experience, pupils were asked to rate their learning experience on a Likert scale 

between 1 (not agree) and 5 (fully agree). Table 2 gives an overview of the pupils’ results with a focus on 

learning experiences. The pupils indicated that the experience was more engaging (AVG = 4.17, SD = 0.91) and 

fun (AVG = 4.68, SD = 0.63). In general, learners found that the lab made the content more interesting and easier 

to understand. Most of them said they would like to learn with Maroon (AVG = 4.39, SD = 0.89). 

 

They also reported that they liked the immersive laboratory and outlined that concepts are easier to understand 

using three-dimensional visualizations and interactions than with traditional methods. Being able to see field-

lines that are usually not visible contributed to this. They also mentioned that compared to real life experiments it 

was easier to conduct the experiments in VR and that Maroon was a fun experience and was a welcome 

relaxation from their typical school routine. Suggestions for improvements made the experiments look even 

more realistic, further improving the visualizations. A larger collection of experiments was also mentioned to 

improve Maroon. 

 

 

5.4. Learning value from the teacher’s perspective 

 

Besides pupils, student teachers were also asked to rate the learning experience with Maroon on a Likert scale 

between 1 (not agree) and 5 (fully agree). Most student teachers mentioned that the VR setup is a good 

supplement to regular learning (AVG = 4.15, SD = 1.08). They also reported that Maroon makes the learning 

content more interesting (AVG = 3.88, SD = 1.18) and easier to understand (AVG = 3.65, SD = 1.13). In general, 

student teachers found that learning with Maroon was more motivating than ordinary exercises and more fun, as 

can also be seen from Table 2. 

 

The student teachers reported that VR can be a good way to extend the variation of teaching methods in the 

classroom. The fact that Maroon appeals to multiple senses makes the system attractive for several types of 

learners, while the novelty of the technology is an attractive way to motivate students who normally show little 

interest in a subject. It was also mentioned that virtual experiments are valuable when the real experiment is 

expensive or dangerous, since students can carry these out with no health risks. Also mentioned was the 

possibility of visualizing unseen phenomena, learning in a playful way and the ability to change the experiments 

very quickly. Some student teachers criticized Maroon as being too close to regular games in its current state, 

and this makes it more difficult to keep students focused. To allow students to use it without close monitoring 

and guidance, and to prevent students from being distracted, the system should include detailed tasks with clear 

instructions. It was also found that obtaining enough VR headsets for all students is currently too costly and for 

this reason would be best to use the technology in the form of projects days. The setup time for the system can 

be regarded as reasonable in the context of such a project day. 

 

In addition, student teachers recommended the use of videos in Maroon to provide additional support in the form 

of introductory film material that revisits the learning topics discussed, or videos showing the experiment and 

additional information to support the process of learning while experimenting in VR. 

 

Table 2. Learning Experience rated by pupils and student teachers on a Likert Scale between 1 (not agree) and 5 

(fully agree) 

 Pupils Student Teachers 

 AVG SD AVG SD 

I would like to learn with Maroon. 4.39 0.89 3.54 1.27 

It is a good idea to use Maroon for learning. 4.51 0.86 3.92 0.98 

Maroon is a good supplement to regular learning. 4.56 0.79 4.15 1.08 

I learned something with Maroon. 4.08 0.92 2.69 1.23 

Maroon makes the content more interesting. 4.63 0.64 3.88 1.18 

Maroon makes the content easier to understand. 4.27 0.89 3.65 1.13 

Maroon makes learning more engaging. 4.17 0.91 3.19 0.85 

Maroon makes learning more fun. 4.68 0.63 4.08 1.09 

Maroon makes learning more interesting. 4.46 0.73 3.96 1.08 

The experience with Maroon inspired me to learn more about physics. 3.49 1.22 3.12 1.21 

Learning with Maroon was more motivating than ordinary exercises. 4.51 0.70 4.23 0.95 

It makes course content more interesting to learn about. 4.44 0.77 3.62 1.10 

I would rather like to learn Physics with Maroon than with traditional 4.14 0.96 2.81 1.27 
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methods. 

I find regular physics classes boring. 3.19 1.25 1.54 0.58 

Seeing the simulations with the VR glasses was engaging. 4.17 0.81 3.81 0.98 

Seeing the simulations with the VR glasses was interesting. 4.42 0.65 4.54 0.58 

Seeing the simulations with the VR glasses was more engaging than 

without. 4.37 0.87 3.96 1.04 

I would rather use Maroon on my phone (+ VR glasses). 3.34 1.36 2.85 1.22 

I would rather use Maroon on my own PC. 3.81 1.07 3.12 1.24 

I would like to learn with Maroon in the classroom. 4.41 0.87 3.77 0.99 

I would buy the VR glasses and download Maroon at home. 3.81 1.12 3.04 1.46 

It was interesting to use Maroon. 4.81 0.43 4.73 0.53 

 

 

5.5. Use cases and pedagogical models 

 

The perspectives of pupils and teachers are often quite different. To consider their ideas and suggestions on how 

to use VR in schools and what can be learned in VR into consideration, we asked the pupils and student teachers 

in open questions to describe their ideas and scenarios. Based on these answers, we provide a list of use cases 

and subjects that can be applied in schools. 

 

 

5.5.1. How to use VR in schools 

 

To identify different use cases, we asked pupils (P) and prospective student teachers (T) how they would use VR 

in school. Student teachers were also asked to give collaborative scenarios as well as pedagogical models. 

 

The following use cases were mentioned: 

• Dedicated VR room (P, T) – Pupils mentioned that they would prefer a dedicated classroom for learning 

with VR. This includes learning as an integral part of classroom lessons as well as after-school 

(extracurricular) activities to repeat and review the learned materials. The student teachers also suggested a 

dedicated room with pre-installed VR setups to save time. 

• Mobile VR experience (P, T) – Due to the financial constraints, pupils and student teachers mentioned the 

usage of smartphones in combination with a mobile VR headset. That allows pupils to run experiments on 

their devices at school and at home. But are limited in their use due to the processing power of these 

devices. 

• Weekly classes (P, T) – Some pupils suggested using VR on a weekly basis to supplement the learning 

material with simulations and visualizations. Student teachers also mentioned the potential of regular VR 

sessions in classes to increase the learning outcomes of pupils. 

• Optional Subject (P) – Pupils also recommended an optional subject or an afternoon class where they can 

use VR for learning and increasing their skills. 

• Project/Group Work (T) – Several student teachers reported the potential of blocked VR classes in the form 

of project days during which pupils can work in groups on different experiments. 

• Autonomous Learning (T) – The student teachers mentioned that VR as an effective educational method, 

could be a valuable tool to support students in autonomous learning. They also mentioned that using 

worksheets might be useful to give pupils clear instructions and help them to focus on the experiment. 

• Collaborative Learning (T) - Since pupils benefit from each other’s resources and skills when learning 

together, student teachers suggested working in groups, where one pupil performs the experiment and the 

others give hints and take notes. 

 

 

5.5.2. Teaching subjects 

 

To identify additional subjects and experiments, we asked pupils and student teachers about phenomena they 

would like to see, learn, or teach in VR. 

 

The following subjects were mentioned: 

• Astronomy 

• Physics 

• Chemistry 

• Biology 
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• History 

• Engineering 

 

While pupils were interested in different STEM subjects, the student teachers were mainly interested in 

experiments in their own field – physics. All of them also highlighted that VR would be an opportunity for 

performing expensive and dangerous experiments within class and for visualizing and experimenting with 

unseen phenomena. 

 

 

6. Discussion 
 

In this study, we examined the challenges and recommendations for learning and teaching in VR, with an 

exemplary focus on the physics domain. In previous studies (Pirker et al., 2017a; Pirker, Lesjak, Parger, & Gütl, 

2018), we have evaluated different VR experiences versus a classic desktop experience with a small group of 

students and teachers. We showed the potential of VR in the field of STEM and discussed the advantages and 

disadvantages. In this paper, we aim to facilitate the challenging task of designing VR learning platforms by 

describing the challenges and giving some recommendations to overcome these challenges. 

 

 

6.1. Challenges and recommendations 

 

Summarizing the findings of our research and study, we concluded that we can distinguish between the 

following main challenge categories: (1) immersion, (2) costs, (3), time restrictions, (4) knowledge gaining 

process. 

 

To achieve an increased learning effect, it is crucial to offer a highly immersive experience, since then the user 

becomes part of the virtual world. Moreover, motion sickness should be restricted to a minimum. We 

recommend using HMDs combined with motion tracking and input devices that enable the interaction with the 

virtual world, as this already ensures a high level of immersion. Furthermore, the user interface should be 

tailored to the VR world, meaning that we create an appealing interface design and give the learners the 

possibility to interact directly with their learning content. As a result, users show more motivation for the 

learning content and simulations as we enable them to learn and explore the phenomena in a playful way (Velev 

& Zlateva, 2017; Callaghan, Eguíluz, McLaughlin, & McShane, 2015). We observed that students could ask 

questions regarding controls and experiment specifics, because the headsets were not equipped with earphones. 

This was especially helpful for first-time VR users, because they could show where a problem was in VR and we 

could see what they were trying to accomplish on-screen and point them in the right direction. 

 

Another factor for using VR experiences complementary to the traditional classroom learning methods are the 

included costs. VR equipment prices already decreased in the previous years and HMDs are now available to a 

broader user base. Nevertheless, it is still a significant factor for most schools as they cannot afford to buy many 

HMDs and equip whole classes (Abulrub, Attridge, & Williams, 2011). We thus recommend using VR setups 

within project days, so that less VR equipment will be needed. Using VR laboratories instead of traditional ones 

reduces the costs of laboratory equipment and gives learners the possibility to perform even expensive 

experiments within the virtual world as many times as they want. Such an approach presents itself as a possible 

solution until mobile VR headsets can provide a similar degree of immersion and computing capabilities. 

 

When using VR, an introduction of some kind is generally required to familiarize the user with the HMDs and 

controls. We must consider the training time for users (Velev & Zlateva, 2017). This can be optimized by using 

guided tutorials to explain how to use the controls (Abdelaziz, Alaa El Din, & Senousy, 2014), not to mention 

that with tutorials teachers do not need to guide each student personally and hence more time is saved. In 

addition, the setup time factor is significant if the VR equipment is to be used during traditional lessons. Hence, 

we recommend using the virtual laboratories within project days or coordinate with other classes, so that the 

equipment is in use throughout the whole day. In consequence the VR laboratory offers the possibility to change 

experiment settings or reset the simulation with a few commands. In addition, there is no need to prepare 

experiments in the real world, this is especially useful when having very time-consuming experiments.  

 

To create a successful VR learning experience the knowledge gaining process should be optimized. Crucial for 

the success is that users should not be overwhelmed when first entering the virtual world (Callaghan, Eguíluz, 

McLaughlin, & McShane, 2015). Furthermore, it is important that the students know what the goal of the 

simulation is and that they do not feel lost in the simulation. During the tests, we noticed that already having 
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background knowledge is a significant advantage for performing simulations. As Mayer’s cognitive theory of 

multimedia states, learners receive information via two separate channels (visual and auditory) with limited 

capacity. Learners must select and organize the relevant information and integrate it based upon prior knowledge 

(Mayer, 2002). We found that a predefined quest list with clear task instructions in combination with worksheets 

can help students to stay focused and motivated. Moreover, with the use of VR we encourage the motivation of 

learners in a playful way while keeping them safe during the performance of dangerous experiments (Callaghan, 

Eguíluz, McLaughlin, & McShane, 2015). Through the use of VR we can provide users with the possibility for 

visualizing invisible phenomena, which proved to make the learning content more readily comprehensible for 

students (Slavova & Mu, 2018). The greatest advantage, however, is that learners can explore and interact with 

the simulations at their own pace and this motivates them, encourages their creativity and lets them utilize their 

theoretical knowledge. 

 

 

6.2. Limitations 

 

Due to the classroom setup in schools, the number of participants and the time constraints, an A/B split user 

study was not feasible. We therefore decided to set up the study as a workshop where participants tested the VR 

environment in a classroom situation. The different room layouts, light conditions and the shape of play areas 

had a marginal influence on the tracking accuracy, which caused slightly different experiences. While some 

pupils had experience in programming, VR, and video games, others had not been much involved in computer 

games, VR, and programming during their curriculum. The learning effects were determined by self-evaluation 

and do not indicate long-term effects. Since not all participants (15 pupils and 3 student teachers) completed the 

questionnaire, some data sets could not be included in the evaluation. 

 

 

7. Conclusion 
 

In conclusion, VR can offer an exciting and engaging ways to learn and teach. But there are still challenges that 

need to be overcome to make it feasible for schools. We wish to offer some recommendations on how to create 

an engaging VR learning experience, from which both students and teachers will benefit. Our core findings were 

that an immersive experience motivates students and encourages them to learn more. Moreover, time and costs 

are still crucial factors whether the VR laboratory will be included into school routines or not. Additionally, VR 

offers many possibilities and improvements for the knowledge gaining process, such as enabling the 

performance of dangerous experiments in a safe way or visualizing invisible processes.  

 

Although participants rated the interaction with the laboratory as good, there is still potential for improvement, 

especially in the design and usability. Both pupils and student teachers requested a more accessible method for 

easier classroom integration. Future research should consider the potential of mobile VR devices such as 

smartphones or standalone devices and explore how we can integrate them into classrooms. For future work, it 

would be useful to port the current framework to mobile devices and explore how we can integrate these in 

classrooms. An important step would be to discuss the current results with experienced teachers and to obtain 

their feedback on the identified challenges and recommendations. Future studies could then investigate the 

different use cases to develop a pedagogical model for schools. In future the effect of not wearing earphones and 

of receiving tips, breaks and immersion could be investigated, or also if it could be a useful setup to have one 

student performing an experiment while one or more peers give hints on how to complete the tasks involved. 
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