
Open Source for Video Games - A Shortlist of Game Engines

Authors: Johanna Pirker, Marco Bertini, Mathias Lux;

Affiliation: Graz University of Technology, University of Florence, University of Klagenfurt;

Editors: Mathias Lux and Marco Bertini

Published in: ACM SIGMM Records, Issue 3, 2020

URL: https://records.sigmm.org/?open-source-item=open-source-for-video-games-a-shortlist-of-game-engines

Open-source software is a relevant topic in video game development. Taking a look at the most
frequently employed game engines for developing Android games [1] we can see that seven out of ten
ranked engines are OSS. Over the last decade, more and more game studios and individual developers
switched to open-source software. Oliver Franzke from Double Fine Productions described the
phenomenon from his point of view at GDC Europe 2013 [2]. For him developing game engines from
scratch is too costly, and re-using self-made game engines often involves too much repurposing as they
were developed with one specific game in mind. Existing third-party game engines might not support all
features needed, and requesting new features or APIs from the developers is a tedious effort. In
contrast to that, an open-source game engine is typically stable, extendable, and - in the best case - has
a lively community accepting patches and helping out problems. Best of all, if a bug in the game engine
is found or a feature is needed, one can fix it and compile it instead of filing a bug report or feature
request and hoping for the next release of the engine being in time for the release of the own project.

Epic Games was one of the first AAA game engine developers to publish the source code of their Unreal
Engine [3] in 2015 to let game developers investigate critical parts and send in patches and file bug
reports. However, they did not change their model to OSS. Amazon (with the Lumberyard engine),
Unity, and Crytek (with the CryEngine) follow similar models, where the source code is available for
developers, but no open-source license is used. Other prominent source code releases included the
famous id Tech engines, which powered games like Doom and Quake, and the Serious Sam Engine from
Crotech [4, 5]. In both cases, they were made available GPL license for historical and educational
purposes and developers never released the most recent version of their engines.

Open Source Game Engines
A game engine, often also referred to as a game framework as the lines are blurry there, covers the most
basic aspects of video games, and tries to take many of the menial tasks away from game developers.
They can be very basic, only offering a way to implement the game loop with additional support for
timing and assets, or they can be fully-fledged with in-built high-level editors or even marketplaces to
share, sell, and download content. Moreover, some game engines are genre-specific and focus on very
particular game mechanics, e.g. non-linear storytelling, puzzles, or dungeon exploration, by providing
specialized tools and workflows to make game creation in this particular genre easier. For most of
them, platform independence is a big thing, so that a game can be written on a platform, typically a PC
or a Mac, and deployed to many others, e.g. mobile phones, tablets, the web, etc. Especially among indie
developers, open source engines provide a great opportunity. On the indie game hosting website

https://records.sigmm.org/?open-source-item=open-source-for-video-games-a-shortlist-of-game-engines


itch.io, 5 out of the top 15 used game engines are open-source engines [8] including Twine, Godot,
Ren’Py, LÖVE, and libGDX. In the following sections, we will take a closer look at these engines.

Godot Engine

A popular choice for 2D as well as 3D game development for multiple platforms is the Godot Engine. It
follows a scene based approach, where a game is based on a scene graph, or more precisely a tree, and
nodes of the tree depend on each other. Godot comes with its own editor running on the Godot Engine.
Language of choice has been GDScript for a long time, which is similar to Python. But lately, Microsoft
has sponsored the integration of C# in the Godot Engine and there is an additional release with Mono
included, supporting C# 8. Moreover, an extensive catalogue of community provided plugins adds to
the in-build features with other programming languages, support for VR, and much more.

The screenshot shows a simple scene in Godot with a box, a plane, and a camera in the main editor. The
scene manager is shown on the left hand side, just above the resource management tab.

Godot is available under the MIT License, also a common and permissive open source software license.
Godot offers cross compilation and export to Windows, Mac OS X, Linux, Android, iOS, Nintendo
Switch, HTML, and WebAssembly. With 28 MB of download for the Windows 10 executable, Godot has
a small footprint. However, the packages for distribution on different platforms require extra



downloads per platform. The development of Godot has seen more than 30,000 commits by more than
1000 contributors on Github to date. The user and developer community is active throughout various
channels including Discord, web forums, Facebook, Steam, and YouTube.

Godot is a little bit harder to learn compared to LÖVE as the GDScript language as the primary method
of programming is something new, but it is similar enough to Python. Through the scene based
approach many elementary tasks, e.g. controlling the game loop or loading assets, are done by the
engine.

LÖVE

A low-level, simplistic, and elegant way of creating 2D games is provided by LÖVE [6]. Focusing on the
implementation of the game loop, LÖVE provides a framework for creating games in Lua, that can be
run on Windows, Mac OS X, Linux, Android, and iOS. Fully developed in C++ and C it has very small
space requirements and takes less than 10MB for its Windows version. Lua as a programming language
is a C-like, interpreted language, and easy to learn for people who know Java, C#, or C.

The above figure gives a simple example where a sound effect is played when a button is clicked. Asset
loading is done in the function love.load(), the input analysis is done in love.update(), and the visual
output is created in love.draw(). LÖVE does not offer higher-level data structures like sprites or an event
system, where handlers for interaction can be registered. However, there are a lot of pre-defined Lua



data structures and additional libraries created from the community and of course one can build an
own implementation of a sprite.

For installation, one only has to download the executables for the respective platform and run a
main.lua file with the love executable. Alternatively, a game and all its code and assets can be packaged
in a ZIP-file with the file ending .love and the main.lua file at its root.

LÖVE has a lively community of enthusiasts, which shows in the high number of commits (more than
3,600 to date) on Github [7] and the high frequency of forum posts. There are numerous tutorials
provided by the community and a wiki is provided with API documentation and examples. LÖVE is
provided under zlib license, which is very permissive and compatible with the GPL license. All in all,
LÖVE provides an easy entry into low-level game programming and lets users keep their data
structures and memory consumption under tight control. The downside is that LÖVE does not provide
implementations for common data structures and event-based systems. However, it has a steep
learning curve and a very small footprint, and as it is based on plain text Lua code, it’s perfect for
collaborative work on small projects using Git or any other versioning and collaboration system.

Twine

Twine is an open-source tool to create interactive stories and is hosted on GitHub [9]. While Twine v1
was written in Python, v2 is written in JavaScript; both are available under the GPL v3 license. The
interactive stories are saved in a story format called Harlowe. The published games and interactive
stories can be played in the web browser. To create such an experience no programming skills are
needed. The barrier to use this tool is therefore very low and everyone can create experiences.

An important element of Twine, which can be found by many successful open-source products, is the
extensive and complete user documentation and manual.



The screenshot shows a simple interactive story in the editor’s “Passages View”. The story is created
directly in the web browser. To create a story, the developer creates different passages, which can be
described as different parts of the story. These passages can be connected through links. By clicking on
a link, the player is then redirected to a different passage. Often, this is used to generate a choice for
the player.

Twine is a great tool to generate text-based adventures, non-linear stories, and narrative prototypes
for games in a fast way and is especially a great resource to create first game projects without
programming skills. While the underlying Harlowe format allows for some programming, options are
limited, and debugging of complex code is tedious. In that sense Twine is limited in terms of games that
can be made, but an extremely useful tool for the particular genre of narrative games. It is easy to learn
and the published files (HTML 5) are easy to distribute and integrate.

Ren’Py

Ren’Py is a powerful open-source engine to create visual novels, which are interactive fiction games,
often mixed media with text and images or even videos. Visual novels are created in the Ren’Py
Launcher (available for Windows, Mac, and Linux). It uses the MIT license model. It is based on Python
and is well supported by the community. In addition to PC and Web, Ren’Py allows building applications
for Android and iOS. Ren’Py uses a Python-like scripting language. It allows the integration of
multimedia assets such as graphics or audio elements. This also makes the build structures more



complex but also prevents, to some extent cracking attempts. Compared to Twine, the possibility to
integrate multimedia objects makes it a powerful tool to create interactive visual experiences.

The screenshot shows a snippet of a very simple scene. In the first lines characters are defined. In the
game dialogue, the names are shown in the defined color. The scene statement displays a background
image; the show statement illustrates an image on the top. The images are located in the “images”
folder. Ren’Py also supports player choices through the menu and jump statements. It also supports
flags and if statements. This can be used, for instance, to store a player's choice and use this choice later
for an in-game decision. Ren’Py also comes with a build distribution system and a testing and debugging
system.

The project is hosted on Github [18] and the community is very active. The project has seen almost
10,000 commits from more than 100 contributors. It is very well documented and, thanks to a



well-written manual, easy to learn. Therefore, it is not surprising that the list of popular games
developed in Ren’Py is long [11].

Honorable mentions
Picking out only four open source game engines is definitely not enough, as many others are
well-known, useful, and adopted in the games industry too. libGDX [13] started out as a framework to
make Android game development easier and now allows for platform independent game development
in Java. Games can be developed and played on Windows, Linux and Mac OS using Java or Kotlin and
they can be deployed to Android, iOS, and the web.

Construct [16] is a popular HTML5-based tool to create 2D games and uses visual programming
features. It started as an open-source project (Construct Classic) created by students. With Construct
2 and Construct 3, the license model moved from open source to proprietary.

Scratch [14] and PocketCode [15] feature a visual programming language, where blocks are put
together like Lego to build a program. Common programming elements like variables, flow control,
loops, basic math, input, output, and sound are supported and small games and fast prototypes can be
created easily. Having been developed with MINT education for children and teenagers in mind, the
learning curve for the visual scripting language is steep and building a game in a short time is a
rewarding experience.

Besides engines and frameworks, the open-source community provides a lot of tools for game
development. One well known example is Blender [17]. While most people know Blender for its 3D
modeling capabilities, it can also do video editing, compositing, and animation, and is an important tool
for developers who are not able or willing to use commercial tools.

Conclusion
Open-source contributions have always been an important driver of the games industry. Also, the
possibility of modding and editing games has been a starting point for many programmers and game
developers. For example, the first known game developers in Peru did not have the opportunity to learn
how to create games anywhere. So they started cracking and decompiling published games to acquire
the required game programming expertise and created their first own games built on this knowledge
[12]. Thus, it is not surprising that releasing open-source tools and open-source games have provided a
great boost for the game development community. Source code releases have also been used by
development studios to contribute back to the community, as can be seen on the example of Croteam’s
Serious Engine. But they have also been used to build a community around their own studio or the
game. For example, Jon Manning describes in his GDC talk how Night in the Woods open-source tool
Yarn, a dialogue system, helped to build a community for their game. This community further improved
the game and the development process by helping to fix bugs and improving the tool [10]. Based on
similar positive experiences, over time many game developers have published their source code.

A further problem arising with a lot of games is archival and preservation. Proprietary engines like
Unity and Unreal run well at release time, but with time underlying APIs and operating systems change,



and games can no longer be played. In this case open-source engines and games help a lot as
enthusiasts and people dedicated to preservation can bring old games back to speed easier.

The list of open-source game engines is still getting longer and many open-source game engines were
developed to cover special niche genres such as text-based, 2D, or web-based-games. But as we can see
from the example of Godot’s success, the need for open-source tools for developing complex and large
games for different platforms is huge. Summarizing, open-source products are important to empower
game developers not only to create games, but also to help them to build a community, to be part of a
community, and to learn how to develop games.

References
[1] https://www.appbrain.com/stats/libraries/tag/game-framework/android-game-frameworks, last
accessed 2020-09-22

[2] https://www.gdcvault.com/play/1019748/Broken-Age-Rethinking-a-Classic

[3] https://docs.unrealengine.com/en-US/GettingStarted/DownloadingUnrealEngine/index.html

[4] https://en.wikipedia.org/wiki/Doom_engine

[5] http://www.croteam.com/serious-sam-source-code-released/

[6] https://love2d.org

[7] https://github.com/love2d/love

[8] https://itch.io/game-development/engines/most-projects

[9] https://github.com/klembot/twinejs

[10] https://www.gdcvault.com/play/1024197/Making-Night-in-the-Woods

[11] https://en.wikipedia.org/wiki/List_of_Ren%27Py_games

[12] https://www.polygon.com/features/2014/2/10/5373586/mr-byte-indie-king-of-peru

[13] https://libgdx.badlogicgames.com/

[14] https://scratch.mit.edu/

[15] https://share.catrob.at/pocketcode/

[16] https://www.construct.net/

[17] https://www.blender.org/

[18] https://github.com/renpy/renpy

https://www.appbrain.com/stats/libraries/tag/game-framework/android-game-frameworks
https://www.gdcvault.com/play/1019748/Broken-Age-Rethinking-a-Classic
https://docs.unrealengine.com/en-US/GettingStarted/DownloadingUnrealEngine/index.html
https://en.wikipedia.org/wiki/Doom_engine
http://www.croteam.com/serious-sam-source-code-released/
https://love2d.org
https://github.com/love2d/love
https://itch.io/game-development/engines/most-projects
https://github.com/klembot/twinejs
https://www.gdcvault.com/play/1024197/Making-Night-in-the-Woods
https://en.wikipedia.org/wiki/List_of_Ren%27Py_games
https://www.polygon.com/features/2014/2/10/5373586/mr-byte-indie-king-of-peru
https://libgdx.badlogicgames.com/
https://scratch.mit.edu/
https://share.catrob.at/pocketcode/
https://www.construct.net/
https://www.blender.org/
https://github.com/renpy/renpy

